跳到内容

pydantic_ai.messages

ModelMessage 的结构可以显示为图表

graph RL
    SystemPromptPart(SystemPromptPart) --- ModelRequestPart
    UserPromptPart(UserPromptPart) --- ModelRequestPart
    ToolReturnPart(ToolReturnPart) --- ModelRequestPart
    RetryPromptPart(RetryPromptPart) --- ModelRequestPart
    TextPart(TextPart) --- ModelResponsePart
    ToolCallPart(ToolCallPart) --- ModelResponsePart
    ModelRequestPart("ModelRequestPart<br>(Union)") --- ModelRequest
    ModelRequest("ModelRequest(parts=list[...])") --- ModelMessage
    ModelResponsePart("ModelResponsePart<br>(Union)") --- ModelResponse
    ModelResponse("ModelResponse(parts=list[...])") --- ModelMessage("ModelMessage<br>(Union)")

SystemPromptPart dataclass

系统提示,通常由应用程序开发人员编写。

这为模型提供了上下文和关于如何响应的指导。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
@dataclass
class SystemPromptPart:
    """A system prompt, generally written by the application developer.

    This gives the model context and guidance on how to respond.
    """

    content: str
    """The content of the prompt."""

    timestamp: datetime = field(default_factory=_now_utc)
    """The timestamp of the prompt."""

    dynamic_ref: str | None = None
    """The ref of the dynamic system prompt function that generated this part.

    Only set if system prompt is dynamic, see [`system_prompt`][pydantic_ai.Agent.system_prompt] for more information.
    """

    part_kind: Literal['system-prompt'] = 'system-prompt'
    """Part type identifier, this is available on all parts as a discriminator."""

    def otel_event(self) -> Event:
        return Event('gen_ai.system.message', body={'content': self.content, 'role': 'system'})

content instance-attribute

content: str

提示的内容。

timestamp class-attribute instance-attribute

timestamp: datetime = field(default_factory=now_utc)

提示的时间戳。

dynamic_ref class-attribute instance-attribute

dynamic_ref: str | None = None

生成此部分的动态系统提示函数的引用。

仅当系统提示是动态的时设置,请参阅 system_prompt 了解更多信息。

part_kind class-attribute instance-attribute

part_kind: Literal['system-prompt'] = 'system-prompt'

部分类型标识符,这在所有部分上都可用作鉴别器。

AudioUrl dataclass

音频文件的 URL。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
@dataclass
class AudioUrl:
    """A URL to an audio file."""

    url: str
    """The URL of the audio file."""

    kind: Literal['audio-url'] = 'audio-url'
    """Type identifier, this is available on all parts as a discriminator."""

    @property
    def media_type(self) -> AudioMediaType:
        """Return the media type of the audio file, based on the url."""
        if self.url.endswith('.mp3'):
            return 'audio/mpeg'
        elif self.url.endswith('.wav'):
            return 'audio/wav'
        else:
            raise ValueError(f'Unknown audio file extension: {self.url}')

url instance-attribute

url: str

音频文件的 URL。

kind class-attribute instance-attribute

kind: Literal['audio-url'] = 'audio-url'

类型标识符,这在所有部分上都可用作鉴别器。

media_type property

media_type: AudioMediaType

根据 URL 返回音频文件的媒体类型。

ImageUrl dataclass

图像的 URL。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
@dataclass
class ImageUrl:
    """A URL to an image."""

    url: str
    """The URL of the image."""

    kind: Literal['image-url'] = 'image-url'
    """Type identifier, this is available on all parts as a discriminator."""

    @property
    def media_type(self) -> ImageMediaType:
        """Return the media type of the image, based on the url."""
        if self.url.endswith(('.jpg', '.jpeg')):
            return 'image/jpeg'
        elif self.url.endswith('.png'):
            return 'image/png'
        elif self.url.endswith('.gif'):
            return 'image/gif'
        elif self.url.endswith('.webp'):
            return 'image/webp'
        else:
            raise ValueError(f'Unknown image file extension: {self.url}')

    @property
    def format(self) -> ImageFormat:
        """The file format of the image.

        The choice of supported formats were based on the Bedrock Converse API. Other APIs don't require to use a format.
        """
        return _image_format(self.media_type)

url instance-attribute

url: str

图像的 URL。

kind class-attribute instance-attribute

kind: Literal['image-url'] = 'image-url'

类型标识符,这在所有部分上都可用作鉴别器。

media_type property

media_type: ImageMediaType

根据 URL 返回图像的媒体类型。

format property

format: ImageFormat

图像的文件格式。

支持格式的选择基于 Bedrock Converse API。其他 API 不需要使用格式。

DocumentUrl dataclass

文档的 URL。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
@dataclass
class DocumentUrl:
    """The URL of the document."""

    url: str
    """The URL of the document."""

    kind: Literal['document-url'] = 'document-url'
    """Type identifier, this is available on all parts as a discriminator."""

    @property
    def media_type(self) -> str:
        """Return the media type of the document, based on the url."""
        type_, _ = guess_type(self.url)
        if type_ is None:
            raise RuntimeError(f'Unknown document file extension: {self.url}')
        return type_

    @property
    def format(self) -> DocumentFormat:
        """The file format of the document.

        The choice of supported formats were based on the Bedrock Converse API. Other APIs don't require to use a format.
        """
        return _document_format(self.media_type)

url instance-attribute

url: str

文档的 URL。

kind class-attribute instance-attribute

kind: Literal['document-url'] = 'document-url'

类型标识符,这在所有部分上都可用作鉴别器。

media_type property

media_type: str

根据 URL 返回文档的媒体类型。

format property

format: DocumentFormat

文档的文件格式。

支持格式的选择基于 Bedrock Converse API。其他 API 不需要使用格式。

BinaryContent dataclass

二进制内容,例如音频或图像文件。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
@dataclass
class BinaryContent:
    """Binary content, e.g. an audio or image file."""

    data: bytes
    """The binary data."""

    media_type: AudioMediaType | ImageMediaType | DocumentMediaType | str
    """The media type of the binary data."""

    kind: Literal['binary'] = 'binary'
    """Type identifier, this is available on all parts as a discriminator."""

    @property
    def is_audio(self) -> bool:
        """Return `True` if the media type is an audio type."""
        return self.media_type.startswith('audio/')

    @property
    def is_image(self) -> bool:
        """Return `True` if the media type is an image type."""
        return self.media_type.startswith('image/')

    @property
    def is_document(self) -> bool:
        """Return `True` if the media type is a document type."""
        return self.media_type in {
            'application/pdf',
            'text/plain',
            'text/csv',
            'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
            'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet',
            'text/html',
            'text/markdown',
            'application/vnd.ms-excel',
        }

    @property
    def format(self) -> str:
        """The file format of the binary content."""
        if self.is_audio:
            if self.media_type == 'audio/mpeg':
                return 'mp3'
            elif self.media_type == 'audio/wav':
                return 'wav'
        elif self.is_image:
            return _image_format(self.media_type)
        elif self.is_document:
            return _document_format(self.media_type)
        raise ValueError(f'Unknown media type: {self.media_type}')

data instance-attribute

data: bytes

二进制数据。

media_type instance-attribute

media_type: (
    AudioMediaType
    | ImageMediaType
    | DocumentMediaType
    | str
)

二进制数据的媒体类型。

kind class-attribute instance-attribute

kind: Literal['binary'] = 'binary'

类型标识符,这在所有部分上都可用作鉴别器。

is_audio property

is_audio: bool

如果媒体类型是音频类型,则返回 True

is_image property

is_image: bool

如果媒体类型是图像类型,则返回 True

is_document property

is_document: bool

如果媒体类型是文档类型,则返回 True

format property

format: str

二进制内容的文件格式。

UserPromptPart dataclass

用户提示,通常由最终用户编写。

内容来自 Agent.runAgent.run_syncAgent.run_streamuser_prompt 参数。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
@dataclass
class UserPromptPart:
    """A user prompt, generally written by the end user.

    Content comes from the `user_prompt` parameter of [`Agent.run`][pydantic_ai.Agent.run],
    [`Agent.run_sync`][pydantic_ai.Agent.run_sync], and [`Agent.run_stream`][pydantic_ai.Agent.run_stream].
    """

    content: str | Sequence[UserContent]
    """The content of the prompt."""

    timestamp: datetime = field(default_factory=_now_utc)
    """The timestamp of the prompt."""

    part_kind: Literal['user-prompt'] = 'user-prompt'
    """Part type identifier, this is available on all parts as a discriminator."""

    def otel_event(self) -> Event:
        if isinstance(self.content, str):
            content = self.content
        else:
            # TODO figure out what to record for images and audio
            content = [part if isinstance(part, str) else {'kind': part.kind} for part in self.content]
        return Event('gen_ai.user.message', body={'content': content, 'role': 'user'})

content instance-attribute

content: str | Sequence[UserContent]

提示的内容。

timestamp class-attribute instance-attribute

timestamp: datetime = field(default_factory=now_utc)

提示的时间戳。

part_kind class-attribute instance-attribute

part_kind: Literal['user-prompt'] = 'user-prompt'

部分类型标识符,这在所有部分上都可用作鉴别器。

ToolReturnPart dataclass

工具返回消息,这编码了运行工具的结果。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
@dataclass
class ToolReturnPart:
    """A tool return message, this encodes the result of running a tool."""

    tool_name: str
    """The name of the "tool" was called."""

    content: Any
    """The return value."""

    tool_call_id: str | None = None
    """Optional tool call identifier, this is used by some models including OpenAI."""

    timestamp: datetime = field(default_factory=_now_utc)
    """The timestamp, when the tool returned."""

    part_kind: Literal['tool-return'] = 'tool-return'
    """Part type identifier, this is available on all parts as a discriminator."""

    def model_response_str(self) -> str:
        """Return a string representation of the content for the model."""
        if isinstance(self.content, str):
            return self.content
        else:
            return tool_return_ta.dump_json(self.content).decode()

    def model_response_object(self) -> dict[str, Any]:
        """Return a dictionary representation of the content, wrapping non-dict types appropriately."""
        # gemini supports JSON dict return values, but no other JSON types, hence we wrap anything else in a dict
        if isinstance(self.content, dict):
            return tool_return_ta.dump_python(self.content, mode='json')  # pyright: ignore[reportUnknownMemberType]
        else:
            return {'return_value': tool_return_ta.dump_python(self.content, mode='json')}

    def otel_event(self) -> Event:
        return Event(
            'gen_ai.tool.message',
            body={'content': self.content, 'role': 'tool', 'id': self.tool_call_id, 'name': self.tool_name},
        )

tool_name instance-attribute

tool_name: str

调用的“工具”的名称。

content instance-attribute

content: Any

返回值。

tool_call_id class-attribute instance-attribute

tool_call_id: str | None = None

可选的工具调用标识符,一些模型(包括 OpenAI)使用它。

timestamp class-attribute instance-attribute

timestamp: datetime = field(default_factory=now_utc)

工具返回时的时间戳。

part_kind class-attribute instance-attribute

part_kind: Literal['tool-return'] = 'tool-return'

部分类型标识符,这在所有部分上都可用作鉴别器。

model_response_str

model_response_str() -> str

返回模型内容的字符串表示形式。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
280
281
282
283
284
285
def model_response_str(self) -> str:
    """Return a string representation of the content for the model."""
    if isinstance(self.content, str):
        return self.content
    else:
        return tool_return_ta.dump_json(self.content).decode()

model_response_object

model_response_object() -> dict[str, Any]

返回内容的字典表示形式,适当地包装非字典类型。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
287
288
289
290
291
292
293
def model_response_object(self) -> dict[str, Any]:
    """Return a dictionary representation of the content, wrapping non-dict types appropriately."""
    # gemini supports JSON dict return values, but no other JSON types, hence we wrap anything else in a dict
    if isinstance(self.content, dict):
        return tool_return_ta.dump_python(self.content, mode='json')  # pyright: ignore[reportUnknownMemberType]
    else:
        return {'return_value': tool_return_ta.dump_python(self.content, mode='json')}

RetryPromptPart dataclass

发回给模型的消息,要求它重试。

发送此消息的原因有很多

  • 工具参数的 Pydantic 验证失败,此处内容来自 Pydantic ValidationError
  • 工具引发了 ModelRetry 异常
  • 找不到工具名称对应的工具
  • 当需要结构化响应时,模型返回了纯文本
  • 结构化响应的 Pydantic 验证失败,此处内容来自 Pydantic ValidationError
  • 结果验证器引发了 ModelRetry 异常
源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
@dataclass
class RetryPromptPart:
    """A message back to a model asking it to try again.

    This can be sent for a number of reasons:

    * Pydantic validation of tool arguments failed, here content is derived from a Pydantic
      [`ValidationError`][pydantic_core.ValidationError]
    * a tool raised a [`ModelRetry`][pydantic_ai.exceptions.ModelRetry] exception
    * no tool was found for the tool name
    * the model returned plain text when a structured response was expected
    * Pydantic validation of a structured response failed, here content is derived from a Pydantic
      [`ValidationError`][pydantic_core.ValidationError]
    * a result validator raised a [`ModelRetry`][pydantic_ai.exceptions.ModelRetry] exception
    """

    content: list[pydantic_core.ErrorDetails] | str
    """Details of why and how the model should retry.

    If the retry was triggered by a [`ValidationError`][pydantic_core.ValidationError], this will be a list of
    error details.
    """

    tool_name: str | None = None
    """The name of the tool that was called, if any."""

    tool_call_id: str | None = None
    """Optional tool call identifier, this is used by some models including OpenAI."""

    timestamp: datetime = field(default_factory=_now_utc)
    """The timestamp, when the retry was triggered."""

    part_kind: Literal['retry-prompt'] = 'retry-prompt'
    """Part type identifier, this is available on all parts as a discriminator."""

    def model_response(self) -> str:
        """Return a string message describing why the retry is requested."""
        if isinstance(self.content, str):
            description = self.content
        else:
            json_errors = error_details_ta.dump_json(self.content, exclude={'__all__': {'ctx'}}, indent=2)
            description = f'{len(self.content)} validation errors: {json_errors.decode()}'
        return f'{description}\n\nFix the errors and try again.'

    def otel_event(self) -> Event:
        if self.tool_name is None:
            return Event('gen_ai.user.message', body={'content': self.model_response(), 'role': 'user'})
        else:
            return Event(
                'gen_ai.tool.message',
                body={
                    'content': self.model_response(),
                    'role': 'tool',
                    'id': self.tool_call_id,
                    'name': self.tool_name,
                },
            )

content instance-attribute

content: list[ErrorDetails] | str

模型应该重试的原因和方式的详细信息。

如果重试是由 ValidationError 触发的,这将是错误详细信息列表。

tool_name class-attribute instance-attribute

tool_name: str | None = None

调用的工具的名称(如果有)。

tool_call_id class-attribute instance-attribute

tool_call_id: str | None = None

可选的工具调用标识符,一些模型(包括 OpenAI)使用它。

timestamp class-attribute instance-attribute

timestamp: datetime = field(default_factory=now_utc)

触发重试时的时间戳。

part_kind class-attribute instance-attribute

part_kind: Literal['retry-prompt'] = 'retry-prompt'

部分类型标识符,这在所有部分上都可用作鉴别器。

model_response

model_response() -> str

返回描述请求重试原因的字符串消息。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
340
341
342
343
344
345
346
347
def model_response(self) -> str:
    """Return a string message describing why the retry is requested."""
    if isinstance(self.content, str):
        description = self.content
    else:
        json_errors = error_details_ta.dump_json(self.content, exclude={'__all__': {'ctx'}}, indent=2)
        description = f'{len(self.content)} validation errors: {json_errors.decode()}'
    return f'{description}\n\nFix the errors and try again.'

ModelRequestPart module-attribute

PydanticAI 发送到模型的消息部分。

ModelRequest dataclass

由 PydanticAI 生成并发送到模型的请求,例如从 PydanticAI 应用发送到模型的消息。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
370
371
372
373
374
375
376
377
378
@dataclass
class ModelRequest:
    """A request generated by PydanticAI and sent to a model, e.g. a message from the PydanticAI app to the model."""

    parts: list[ModelRequestPart]
    """The parts of the user message."""

    kind: Literal['request'] = 'request'
    """Message type identifier, this is available on all parts as a discriminator."""

parts instance-attribute

用户消息的各个部分。

kind class-attribute instance-attribute

kind: Literal['request'] = 'request'

消息类型标识符,这在所有部分上都可用作鉴别器。

TextPart dataclass

来自模型的纯文本响应。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
381
382
383
384
385
386
387
388
389
390
391
392
393
@dataclass
class TextPart:
    """A plain text response from a model."""

    content: str
    """The text content of the response."""

    part_kind: Literal['text'] = 'text'
    """Part type identifier, this is available on all parts as a discriminator."""

    def has_content(self) -> bool:
        """Return `True` if the text content is non-empty."""
        return bool(self.content)

content instance-attribute

content: str

响应的文本内容。

part_kind class-attribute instance-attribute

part_kind: Literal['text'] = 'text'

部分类型标识符,这在所有部分上都可用作鉴别器。

has_content

has_content() -> bool

如果文本内容非空,则返回 True

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
391
392
393
def has_content(self) -> bool:
    """Return `True` if the text content is non-empty."""
    return bool(self.content)

ToolCallPart dataclass

来自模型的工具调用。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
@dataclass
class ToolCallPart:
    """A tool call from a model."""

    tool_name: str
    """The name of the tool to call."""

    args: str | dict[str, Any]
    """The arguments to pass to the tool.

    This is stored either as a JSON string or a Python dictionary depending on how data was received.
    """

    tool_call_id: str | None = None
    """Optional tool call identifier, this is used by some models including OpenAI."""

    part_kind: Literal['tool-call'] = 'tool-call'
    """Part type identifier, this is available on all parts as a discriminator."""

    def args_as_dict(self) -> dict[str, Any]:
        """Return the arguments as a Python dictionary.

        This is just for convenience with models that require dicts as input.
        """
        if isinstance(self.args, dict):
            return self.args
        args = pydantic_core.from_json(self.args)
        assert isinstance(args, dict), 'args should be a dict'
        return cast(dict[str, Any], args)

    def args_as_json_str(self) -> str:
        """Return the arguments as a JSON string.

        This is just for convenience with models that require JSON strings as input.
        """
        if isinstance(self.args, str):
            return self.args
        return pydantic_core.to_json(self.args).decode()

    def has_content(self) -> bool:
        """Return `True` if the arguments contain any data."""
        if isinstance(self.args, dict):
            # TODO: This should probably return True if you have the value False, or 0, etc.
            #   It makes sense to me to ignore empty strings, but not sure about empty lists or dicts
            return any(self.args.values())
        else:
            return bool(self.args)

tool_name instance-attribute

tool_name: str

要调用的工具的名称。

args instance-attribute

args: str | dict[str, Any]

传递给工具的参数。

这以 JSON 字符串或 Python 字典的形式存储,具体取决于接收数据的方式。

tool_call_id class-attribute instance-attribute

tool_call_id: str | None = None

可选的工具调用标识符,一些模型(包括 OpenAI)使用它。

part_kind class-attribute instance-attribute

part_kind: Literal['tool-call'] = 'tool-call'

部分类型标识符,这在所有部分上都可用作鉴别器。

args_as_dict

args_as_dict() -> dict[str, Any]

以 Python 字典形式返回参数。

这只是为了方便需要字典作为输入的模型。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
415
416
417
418
419
420
421
422
423
424
def args_as_dict(self) -> dict[str, Any]:
    """Return the arguments as a Python dictionary.

    This is just for convenience with models that require dicts as input.
    """
    if isinstance(self.args, dict):
        return self.args
    args = pydantic_core.from_json(self.args)
    assert isinstance(args, dict), 'args should be a dict'
    return cast(dict[str, Any], args)

args_as_json_str

args_as_json_str() -> str

以 JSON 字符串形式返回参数。

这只是为了方便需要 JSON 字符串作为输入的模型。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
426
427
428
429
430
431
432
433
def args_as_json_str(self) -> str:
    """Return the arguments as a JSON string.

    This is just for convenience with models that require JSON strings as input.
    """
    if isinstance(self.args, str):
        return self.args
    return pydantic_core.to_json(self.args).decode()

has_content

has_content() -> bool

如果参数包含任何数据,则返回 True

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
435
436
437
438
439
440
441
442
def has_content(self) -> bool:
    """Return `True` if the arguments contain any data."""
    if isinstance(self.args, dict):
        # TODO: This should probably return True if you have the value False, or 0, etc.
        #   It makes sense to me to ignore empty strings, but not sure about empty lists or dicts
        return any(self.args.values())
    else:
        return bool(self.args)

ModelResponsePart module-attribute

ModelResponsePart = Annotated[
    Union[TextPart, ToolCallPart],
    Discriminator("part_kind"),
]

模型返回的消息部分。

ModelResponse dataclass

来自模型的响应,例如从模型发送到 PydanticAI 应用的消息。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
@dataclass
class ModelResponse:
    """A response from a model, e.g. a message from the model to the PydanticAI app."""

    parts: list[ModelResponsePart]
    """The parts of the model message."""

    model_name: str | None = None
    """The name of the model that generated the response."""

    timestamp: datetime = field(default_factory=_now_utc)
    """The timestamp of the response.

    If the model provides a timestamp in the response (as OpenAI does) that will be used.
    """

    kind: Literal['response'] = 'response'
    """Message type identifier, this is available on all parts as a discriminator."""

    def otel_events(self) -> list[Event]:
        """Return OpenTelemetry events for the response."""
        result: list[Event] = []

        def new_event_body():
            new_body: dict[str, Any] = {'role': 'assistant'}
            ev = Event('gen_ai.assistant.message', body=new_body)
            result.append(ev)
            return new_body

        body = new_event_body()
        for part in self.parts:
            if isinstance(part, ToolCallPart):
                body.setdefault('tool_calls', []).append(
                    {
                        'id': part.tool_call_id,
                        'type': 'function',  # TODO https://github.com/pydantic/pydantic-ai/issues/888
                        'function': {
                            'name': part.tool_name,
                            'arguments': part.args,
                        },
                    }
                )
            elif isinstance(part, TextPart):
                if body.get('content'):
                    body = new_event_body()
                body['content'] = part.content

        return result

parts instance-attribute

模型消息的各个部分。

model_name class-attribute instance-attribute

model_name: str | None = None

生成响应的模型的名称。

timestamp class-attribute instance-attribute

timestamp: datetime = field(default_factory=now_utc)

响应的时间戳。

如果模型在响应中提供时间戳(如 OpenAI 所做的那样),将使用该时间戳。

kind class-attribute instance-attribute

kind: Literal['response'] = 'response'

消息类型标识符,这在所有部分上都可用作鉴别器。

otel_events

otel_events() -> list[Event]

返回响应的 OpenTelemetry 事件。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
def otel_events(self) -> list[Event]:
    """Return OpenTelemetry events for the response."""
    result: list[Event] = []

    def new_event_body():
        new_body: dict[str, Any] = {'role': 'assistant'}
        ev = Event('gen_ai.assistant.message', body=new_body)
        result.append(ev)
        return new_body

    body = new_event_body()
    for part in self.parts:
        if isinstance(part, ToolCallPart):
            body.setdefault('tool_calls', []).append(
                {
                    'id': part.tool_call_id,
                    'type': 'function',  # TODO https://github.com/pydantic/pydantic-ai/issues/888
                    'function': {
                        'name': part.tool_name,
                        'arguments': part.args,
                    },
                }
            )
        elif isinstance(part, TextPart):
            if body.get('content'):
                body = new_event_body()
            body['content'] = part.content

    return result

ModelMessage module-attribute

ModelMessage = Annotated[
    Union[ModelRequest, ModelResponse],
    Discriminator("kind"),
]

发送到模型或由模型返回的任何消息。

ModelMessagesTypeAdapter module-attribute

ModelMessagesTypeAdapter = TypeAdapter(
    list[ModelMessage],
    config=ConfigDict(
        defer_build=True, ser_json_bytes="base64"
    ),
)

用于(反)序列化消息的 Pydantic TypeAdapter

TextPartDelta dataclass

用于 TextPart 的部分更新(增量),以附加新的文本内容。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
@dataclass
class TextPartDelta:
    """A partial update (delta) for a `TextPart` to append new text content."""

    content_delta: str
    """The incremental text content to add to the existing `TextPart` content."""

    part_delta_kind: Literal['text'] = 'text'
    """Part delta type identifier, used as a discriminator."""

    def apply(self, part: ModelResponsePart) -> TextPart:
        """Apply this text delta to an existing `TextPart`.

        Args:
            part: The existing model response part, which must be a `TextPart`.

        Returns:
            A new `TextPart` with updated text content.

        Raises:
            ValueError: If `part` is not a `TextPart`.
        """
        if not isinstance(part, TextPart):
            raise ValueError('Cannot apply TextPartDeltas to non-TextParts')
        return replace(part, content=part.content + self.content_delta)

content_delta instance-attribute

content_delta: str

要添加到现有 TextPart 内容的增量文本内容。

part_delta_kind class-attribute instance-attribute

part_delta_kind: Literal['text'] = 'text'

部分增量类型标识符,用作鉴别器。

apply

apply(part: ModelResponsePart) -> TextPart

将此文本增量应用于现有的 TextPart

参数

名称 类型 描述 默认值
part ModelResponsePart

现有的模型响应部分,必须是 TextPart

必需

返回值

类型 描述
TextPart

具有更新文本内容的新 TextPart

引发

类型 描述
ValueError

如果 part 不是 TextPart

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
def apply(self, part: ModelResponsePart) -> TextPart:
    """Apply this text delta to an existing `TextPart`.

    Args:
        part: The existing model response part, which must be a `TextPart`.

    Returns:
        A new `TextPart` with updated text content.

    Raises:
        ValueError: If `part` is not a `TextPart`.
    """
    if not isinstance(part, TextPart):
        raise ValueError('Cannot apply TextPartDeltas to non-TextParts')
    return replace(part, content=part.content + self.content_delta)

ToolCallPartDelta dataclass

用于 ToolCallPart 的部分更新(增量),以修改工具名称、参数或工具调用 ID。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
@dataclass
class ToolCallPartDelta:
    """A partial update (delta) for a `ToolCallPart` to modify tool name, arguments, or tool call ID."""

    tool_name_delta: str | None = None
    """Incremental text to add to the existing tool name, if any."""

    args_delta: str | dict[str, Any] | None = None
    """Incremental data to add to the tool arguments.

    If this is a string, it will be appended to existing JSON arguments.
    If this is a dict, it will be merged with existing dict arguments.
    """

    tool_call_id: str | None = None
    """Optional tool call identifier, this is used by some models including OpenAI.

    Note this is never treated as a delta — it can replace None, but otherwise if a
    non-matching value is provided an error will be raised."""

    part_delta_kind: Literal['tool_call'] = 'tool_call'
    """Part delta type identifier, used as a discriminator."""

    def as_part(self) -> ToolCallPart | None:
        """Convert this delta to a fully formed `ToolCallPart` if possible, otherwise return `None`.

        Returns:
            A `ToolCallPart` if both `tool_name_delta` and `args_delta` are set, otherwise `None`.
        """
        if self.tool_name_delta is None or self.args_delta is None:
            return None

        return ToolCallPart(
            self.tool_name_delta,
            self.args_delta,
            self.tool_call_id,
        )

    @overload
    def apply(self, part: ModelResponsePart) -> ToolCallPart: ...

    @overload
    def apply(self, part: ModelResponsePart | ToolCallPartDelta) -> ToolCallPart | ToolCallPartDelta: ...

    def apply(self, part: ModelResponsePart | ToolCallPartDelta) -> ToolCallPart | ToolCallPartDelta:
        """Apply this delta to a part or delta, returning a new part or delta with the changes applied.

        Args:
            part: The existing model response part or delta to update.

        Returns:
            Either a new `ToolCallPart` or an updated `ToolCallPartDelta`.

        Raises:
            ValueError: If `part` is neither a `ToolCallPart` nor a `ToolCallPartDelta`.
            UnexpectedModelBehavior: If applying JSON deltas to dict arguments or vice versa.
        """
        if isinstance(part, ToolCallPart):
            return self._apply_to_part(part)

        if isinstance(part, ToolCallPartDelta):
            return self._apply_to_delta(part)

        raise ValueError(f'Can only apply ToolCallPartDeltas to ToolCallParts or ToolCallPartDeltas, not {part}')

    def _apply_to_delta(self, delta: ToolCallPartDelta) -> ToolCallPart | ToolCallPartDelta:
        """Internal helper to apply this delta to another delta."""
        if self.tool_name_delta:
            # Append incremental text to the existing tool_name_delta
            updated_tool_name_delta = (delta.tool_name_delta or '') + self.tool_name_delta
            delta = replace(delta, tool_name_delta=updated_tool_name_delta)

        if isinstance(self.args_delta, str):
            if isinstance(delta.args_delta, dict):
                raise UnexpectedModelBehavior(
                    f'Cannot apply JSON deltas to non-JSON tool arguments ({delta=}, {self=})'
                )
            updated_args_delta = (delta.args_delta or '') + self.args_delta
            delta = replace(delta, args_delta=updated_args_delta)
        elif isinstance(self.args_delta, dict):
            if isinstance(delta.args_delta, str):
                raise UnexpectedModelBehavior(
                    f'Cannot apply dict deltas to non-dict tool arguments ({delta=}, {self=})'
                )
            updated_args_delta = {**(delta.args_delta or {}), **self.args_delta}
            delta = replace(delta, args_delta=updated_args_delta)

        if self.tool_call_id:
            # Set the tool_call_id if it wasn't present, otherwise error if it has changed
            if delta.tool_call_id is not None and delta.tool_call_id != self.tool_call_id:
                raise UnexpectedModelBehavior(
                    f'Cannot apply a new tool_call_id to a ToolCallPartDelta that already has one ({delta=}, {self=})'
                )
            delta = replace(delta, tool_call_id=self.tool_call_id)

        # If we now have enough data to create a full ToolCallPart, do so
        if delta.tool_name_delta is not None and delta.args_delta is not None:
            return ToolCallPart(
                delta.tool_name_delta,
                delta.args_delta,
                delta.tool_call_id,
            )

        return delta

    def _apply_to_part(self, part: ToolCallPart) -> ToolCallPart:
        """Internal helper to apply this delta directly to a `ToolCallPart`."""
        if self.tool_name_delta:
            # Append incremental text to the existing tool_name
            tool_name = part.tool_name + self.tool_name_delta
            part = replace(part, tool_name=tool_name)

        if isinstance(self.args_delta, str):
            if not isinstance(part.args, str):
                raise UnexpectedModelBehavior(f'Cannot apply JSON deltas to non-JSON tool arguments ({part=}, {self=})')
            updated_json = part.args + self.args_delta
            part = replace(part, args=updated_json)
        elif isinstance(self.args_delta, dict):
            if not isinstance(part.args, dict):
                raise UnexpectedModelBehavior(f'Cannot apply dict deltas to non-dict tool arguments ({part=}, {self=})')
            updated_dict = {**(part.args or {}), **self.args_delta}
            part = replace(part, args=updated_dict)

        if self.tool_call_id:
            # Replace the tool_call_id entirely if given
            if part.tool_call_id is not None and part.tool_call_id != self.tool_call_id:
                raise UnexpectedModelBehavior(
                    f'Cannot apply a new tool_call_id to a ToolCallPartDelta that already has one ({part=}, {self=})'
                )
            part = replace(part, tool_call_id=self.tool_call_id)
        return part

tool_name_delta class-attribute instance-attribute

tool_name_delta: str | None = None

要添加到现有工具名称的增量文本(如果有)。

args_delta class-attribute instance-attribute

args_delta: str | dict[str, Any] | None = None

要添加到工具参数的增量数据。

如果这是一个字符串,它将附加到现有的 JSON 参数。如果这是一个字典,它将与现有的字典参数合并。

tool_call_id class-attribute instance-attribute

tool_call_id: str | None = None

可选的工具调用标识符,一些模型(包括 OpenAI)使用它。

请注意,这永远不会被视为增量——它可以替换 None,但否则如果提供了不匹配的值,则会引发错误。

part_delta_kind class-attribute instance-attribute

part_delta_kind: Literal['tool_call'] = 'tool_call'

部分增量类型标识符,用作鉴别器。

as_part

as_part() -> ToolCallPart | None

如果可能,将此增量转换为完全形成的 ToolCallPart,否则返回 None

返回值

类型 描述
ToolCallPart | None

如果 tool_name_deltaargs_delta 都已设置,则为 ToolCallPart,否则为 None

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
558
559
560
561
562
563
564
565
566
567
568
569
570
571
def as_part(self) -> ToolCallPart | None:
    """Convert this delta to a fully formed `ToolCallPart` if possible, otherwise return `None`.

    Returns:
        A `ToolCallPart` if both `tool_name_delta` and `args_delta` are set, otherwise `None`.
    """
    if self.tool_name_delta is None or self.args_delta is None:
        return None

    return ToolCallPart(
        self.tool_name_delta,
        self.args_delta,
        self.tool_call_id,
    )

apply

将此增量应用于部分或增量,返回应用更改的新部分或增量。

参数

名称 类型 描述 默认值
part ModelResponsePart | ToolCallPartDelta

要更新的现有模型响应部分或增量。

必需

返回值

类型 描述
ToolCallPart | ToolCallPartDelta

新的 ToolCallPart 或更新的 ToolCallPartDelta

引发

类型 描述
ValueError

如果 part 既不是 ToolCallPart 也不是 ToolCallPartDelta

UnexpectedModelBehavior

如果将 JSON 增量应用于字典参数,反之亦然。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
def apply(self, part: ModelResponsePart | ToolCallPartDelta) -> ToolCallPart | ToolCallPartDelta:
    """Apply this delta to a part or delta, returning a new part or delta with the changes applied.

    Args:
        part: The existing model response part or delta to update.

    Returns:
        Either a new `ToolCallPart` or an updated `ToolCallPartDelta`.

    Raises:
        ValueError: If `part` is neither a `ToolCallPart` nor a `ToolCallPartDelta`.
        UnexpectedModelBehavior: If applying JSON deltas to dict arguments or vice versa.
    """
    if isinstance(part, ToolCallPart):
        return self._apply_to_part(part)

    if isinstance(part, ToolCallPartDelta):
        return self._apply_to_delta(part)

    raise ValueError(f'Can only apply ToolCallPartDeltas to ToolCallParts or ToolCallPartDeltas, not {part}')

ModelResponsePartDelta module-attribute

ModelResponsePartDelta = Annotated[
    Union[TextPartDelta, ToolCallPartDelta],
    Discriminator("part_delta_kind"),
]

任何模型响应部分的部分更新(增量)。

PartStartEvent dataclass

指示新部分已开始的事件。

如果收到多个具有相同索引的 PartStartEvent,则新的事件应完全替换旧的事件。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
@dataclass
class PartStartEvent:
    """An event indicating that a new part has started.

    If multiple `PartStartEvent`s are received with the same index,
    the new one should fully replace the old one.
    """

    index: int
    """The index of the part within the overall response parts list."""

    part: ModelResponsePart
    """The newly started `ModelResponsePart`."""

    event_kind: Literal['part_start'] = 'part_start'
    """Event type identifier, used as a discriminator."""

index instance-attribute

index: int

部分在整体响应部分列表中的索引。

part instance-attribute

新开始的 ModelResponsePart

event_kind class-attribute instance-attribute

event_kind: Literal['part_start'] = 'part_start'

事件类型标识符,用作鉴别器。

PartDeltaEvent dataclass

指示现有部分增量更新的事件。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
690
691
692
693
694
695
696
697
698
699
700
701
@dataclass
class PartDeltaEvent:
    """An event indicating a delta update for an existing part."""

    index: int
    """The index of the part within the overall response parts list."""

    delta: ModelResponsePartDelta
    """The delta to apply to the specified part."""

    event_kind: Literal['part_delta'] = 'part_delta'
    """Event type identifier, used as a discriminator."""

index instance-attribute

index: int

部分在整体响应部分列表中的索引。

delta instance-attribute

要应用于指定部分的增量。

event_kind class-attribute instance-attribute

event_kind: Literal['part_delta'] = 'part_delta'

事件类型标识符,用作鉴别器。

FinalResultEvent dataclass

指示对当前模型请求的响应与结果模式匹配的事件。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
704
705
706
707
708
709
710
711
712
713
@dataclass
class FinalResultEvent:
    """An event indicating the response to the current model request matches the result schema."""

    tool_name: str | None
    """The name of the result tool that was called. `None` if the result is from text content and not from a tool."""
    tool_call_id: str | None
    """The tool call ID, if any, that this result is associated with."""
    event_kind: Literal['final_result'] = 'final_result'
    """Event type identifier, used as a discriminator."""

tool_name instance-attribute

tool_name: str | None

调用的结果工具的名称。如果结果来自文本内容而不是来自工具,则为 None

tool_call_id instance-attribute

tool_call_id: str | None

此结果关联的工具调用 ID(如果有)。

event_kind class-attribute instance-attribute

event_kind: Literal['final_result'] = 'final_result'

事件类型标识符,用作鉴别器。

ModelResponseStreamEvent module-attribute

ModelResponseStreamEvent = Annotated[
    Union[PartStartEvent, PartDeltaEvent],
    Discriminator("event_kind"),
]

模型响应流中的事件,可以是开始新部分或将增量应用于现有部分。

AgentStreamEvent module-attribute

代理流中的事件。

FunctionToolCallEvent dataclass

指示开始调用函数工具的事件。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
725
726
727
728
729
730
731
732
733
734
735
736
737
@dataclass
class FunctionToolCallEvent:
    """An event indicating the start to a call to a function tool."""

    part: ToolCallPart
    """The (function) tool call to make."""
    call_id: str = field(init=False)
    """An ID used for matching details about the call to its result. If present, defaults to the part's tool_call_id."""
    event_kind: Literal['function_tool_call'] = 'function_tool_call'
    """Event type identifier, used as a discriminator."""

    def __post_init__(self):
        self.call_id = self.part.tool_call_id or str(uuid.uuid4())

part instance-attribute

要进行的(函数)工具调用。

call_id class-attribute instance-attribute

call_id: str = field(init=False)

用于将有关调用的详细信息与其结果匹配的 ID。如果存在,则默认为部分的 tool_call_id。

event_kind class-attribute instance-attribute

event_kind: Literal["function_tool_call"] = (
    "function_tool_call"
)

事件类型标识符,用作鉴别器。

FunctionToolResultEvent dataclass

指示函数工具调用结果的事件。

源代码位于 pydantic_ai_slim/pydantic_ai/messages.py
740
741
742
743
744
745
746
747
748
749
@dataclass
class FunctionToolResultEvent:
    """An event indicating the result of a function tool call."""

    result: ToolReturnPart | RetryPromptPart
    """The result of the call to the function tool."""
    tool_call_id: str
    """An ID used to match the result to its original call."""
    event_kind: Literal['function_tool_result'] = 'function_tool_result'
    """Event type identifier, used as a discriminator."""

result instance-attribute

调用函数工具的结果。

tool_call_id instance-attribute

tool_call_id: str

用于将结果与其原始调用匹配的 ID。

event_kind class-attribute instance-attribute

event_kind: Literal["function_tool_result"] = (
    "function_tool_result"
)

事件类型标识符,用作鉴别器。