跳到内容

pydantic_ai.models.function

由本地函数控制的模型。

FunctionModel 类似于 TestModel,但允许对模型的行为进行更精细的控制。

其主要用例是进行比 TestModel 更高级的单元测试。

这是一个最小的示例

function_model_usage.py
from pydantic_ai import Agent
from pydantic_ai.messages import ModelMessage, ModelResponse, TextPart
from pydantic_ai.models.function import FunctionModel, AgentInfo

my_agent = Agent('openai:gpt-4o')


async def model_function(
    messages: list[ModelMessage], info: AgentInfo
) -> ModelResponse:
    print(messages)
    """
    [
        ModelRequest(
            parts=[
                UserPromptPart(
                    content='Testing my agent...',
                    timestamp=datetime.datetime(...),
                    part_kind='user-prompt',
                )
            ],
            kind='request',
        )
    ]
    """
    print(info)
    """
    AgentInfo(
        function_tools=[], allow_text_result=True, result_tools=[], model_settings=None
    )
    """
    return ModelResponse(parts=[TextPart('hello world')])


async def test_my_agent():
    """Unit test for my_agent, to be run by pytest."""
    with my_agent.override(model=FunctionModel(model_function)):
        result = await my_agent.run('Testing my agent...')
        assert result.data == 'hello world'

请参阅 使用 FunctionModel 进行单元测试 以获取详细文档。

FunctionModel dataclass

基类: Model

由本地函数控制的模型。

除了 __init__ 之外,所有方法都是私有的或与基类的方法匹配。

源代码位于 pydantic_ai_slim/pydantic_ai/models/function.py
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
@dataclass(init=False)
class FunctionModel(Model):
    """A model controlled by a local function.

    Apart from `__init__`, all methods are private or match those of the base class.
    """

    function: FunctionDef | None = None
    stream_function: StreamFunctionDef | None = None

    _model_name: str = field(repr=False)
    _system: str = field(default='function', repr=False)

    @overload
    def __init__(self, function: FunctionDef, *, model_name: str | None = None) -> None: ...

    @overload
    def __init__(self, *, stream_function: StreamFunctionDef, model_name: str | None = None) -> None: ...

    @overload
    def __init__(
        self, function: FunctionDef, *, stream_function: StreamFunctionDef, model_name: str | None = None
    ) -> None: ...

    def __init__(
        self,
        function: FunctionDef | None = None,
        *,
        stream_function: StreamFunctionDef | None = None,
        model_name: str | None = None,
    ):
        """Initialize a `FunctionModel`.

        Either `function` or `stream_function` must be provided, providing both is allowed.

        Args:
            function: The function to call for non-streamed requests.
            stream_function: The function to call for streamed requests.
            model_name: The name of the model. If not provided, a name is generated from the function names.
        """
        if function is None and stream_function is None:
            raise TypeError('Either `function` or `stream_function` must be provided')
        self.function = function
        self.stream_function = stream_function

        function_name = self.function.__name__ if self.function is not None else ''
        stream_function_name = self.stream_function.__name__ if self.stream_function is not None else ''
        self._model_name = model_name or f'function:{function_name}:{stream_function_name}'

    async def request(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> tuple[ModelResponse, usage.Usage]:
        agent_info = AgentInfo(
            model_request_parameters.function_tools,
            model_request_parameters.allow_text_result,
            model_request_parameters.result_tools,
            model_settings,
        )

        assert self.function is not None, 'FunctionModel must receive a `function` to support non-streamed requests'

        if inspect.iscoroutinefunction(self.function):
            response = await self.function(messages, agent_info)
        else:
            response_ = await _utils.run_in_executor(self.function, messages, agent_info)
            assert isinstance(response_, ModelResponse), response_
            response = response_
        response.model_name = self._model_name
        # TODO is `messages` right here? Should it just be new messages?
        return response, _estimate_usage(chain(messages, [response]))

    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncIterator[StreamedResponse]:
        agent_info = AgentInfo(
            model_request_parameters.function_tools,
            model_request_parameters.allow_text_result,
            model_request_parameters.result_tools,
            model_settings,
        )

        assert self.stream_function is not None, (
            'FunctionModel must receive a `stream_function` to support streamed requests'
        )

        response_stream = PeekableAsyncStream(self.stream_function(messages, agent_info))

        first = await response_stream.peek()
        if isinstance(first, _utils.Unset):
            raise ValueError('Stream function must return at least one item')

        yield FunctionStreamedResponse(_model_name=self._model_name, _iter=response_stream)

    @property
    def model_name(self) -> str:
        """The model name."""
        return self._model_name

    @property
    def system(self) -> str:
        """The system / model provider."""
        return self._system

__init__

__init__(
    function: FunctionDef, *, model_name: str | None = None
) -> None
__init__(
    *,
    stream_function: StreamFunctionDef,
    model_name: str | None = None
) -> None
__init__(
    function: FunctionDef,
    *,
    stream_function: StreamFunctionDef,
    model_name: str | None = None
) -> None
__init__(
    function: FunctionDef | None = None,
    *,
    stream_function: StreamFunctionDef | None = None,
    model_name: str | None = None
)

初始化 FunctionModel

必须提供 functionstream_function 之一,允许同时提供两者。

参数

名称 类型 描述 默认值
function FunctionDef | None

用于非流式请求的函数调用。

None
stream_function StreamFunctionDef | None

用于流式请求的函数调用。

None
model_name str | None

模型的名称。如果未提供,则会从函数名称生成名称。

None
源代码位于 pydantic_ai_slim/pydantic_ai/models/function.py
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def __init__(
    self,
    function: FunctionDef | None = None,
    *,
    stream_function: StreamFunctionDef | None = None,
    model_name: str | None = None,
):
    """Initialize a `FunctionModel`.

    Either `function` or `stream_function` must be provided, providing both is allowed.

    Args:
        function: The function to call for non-streamed requests.
        stream_function: The function to call for streamed requests.
        model_name: The name of the model. If not provided, a name is generated from the function names.
    """
    if function is None and stream_function is None:
        raise TypeError('Either `function` or `stream_function` must be provided')
    self.function = function
    self.stream_function = stream_function

    function_name = self.function.__name__ if self.function is not None else ''
    stream_function_name = self.stream_function.__name__ if self.stream_function is not None else ''
    self._model_name = model_name or f'function:{function_name}:{stream_function_name}'

model_name property

model_name: str

模型名称。

system property

system: str

系统 / 模型提供商。

AgentInfo dataclass

关于代理的信息。

这作为第二个参数传递给 FunctionModel 中使用的函数。

源代码位于 pydantic_ai_slim/pydantic_ai/models/function.py
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
@dataclass(frozen=True)
class AgentInfo:
    """Information about an agent.

    This is passed as the second to functions used within [`FunctionModel`][pydantic_ai.models.function.FunctionModel].
    """

    function_tools: list[ToolDefinition]
    """The function tools available on this agent.

    These are the tools registered via the [`tool`][pydantic_ai.Agent.tool] and
    [`tool_plain`][pydantic_ai.Agent.tool_plain] decorators.
    """
    allow_text_result: bool
    """Whether a plain text result is allowed."""
    result_tools: list[ToolDefinition]
    """The tools that can called as the final result of the run."""
    model_settings: ModelSettings | None
    """The model settings passed to the run call."""

function_tools instance-attribute

function_tools: list[ToolDefinition]

此代理上可用的函数工具。

这些工具是通过 tooltool_plain 装饰器注册的。

allow_text_result instance-attribute

allow_text_result: bool

是否允许纯文本结果。

result_tools instance-attribute

result_tools: list[ToolDefinition]

可以作为运行的最终结果调用的工具。

model_settings instance-attribute

model_settings: ModelSettings | None

传递给运行调用的模型设置。

DeltaToolCall dataclass

工具调用的增量更改。

用于描述流式结构化响应时的块。

源代码位于 pydantic_ai_slim/pydantic_ai/models/function.py
169
170
171
172
173
174
175
176
177
178
179
180
181
@dataclass
class DeltaToolCall:
    """Incremental change to a tool call.

    Used to describe a chunk when streaming structured responses.
    """

    name: str | None = None
    """Incremental change to the name of the tool."""
    json_args: str | None = None
    """Incremental change to the arguments as JSON"""
    tool_call_id: str | None = None
    """Incremental change to the tool call ID."""

name class-attribute instance-attribute

name: str | None = None

工具名称的增量更改。

json_args class-attribute instance-attribute

json_args: str | None = None

参数作为 JSON 的增量更改

tool_call_id class-attribute instance-attribute

tool_call_id: str | None = None

工具调用 ID 的增量更改。

DeltaToolCalls module-attribute

DeltaToolCalls: TypeAlias = dict[int, DeltaToolCall]

工具调用 ID 到增量更改的映射。

FunctionDef module-attribute

用于生成非流式响应的函数。

StreamFunctionDef module-attribute

用于生成流式响应的函数。

虽然这被定义为具有 AsyncIterator[Union[str, DeltaToolCalls]] 的返回类型,但实际上应该将其视为 Union[AsyncIterator[str], AsyncIterator[DeltaToolCalls]

例如,你需要生成所有文本或所有 DeltaToolCalls,而不是将它们混合。

FunctionStreamedResponse dataclass

基类: StreamedResponse

FunctionModelStreamedResponse 实现。

源代码位于 pydantic_ai_slim/pydantic_ai/models/function.py
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
@dataclass
class FunctionStreamedResponse(StreamedResponse):
    """Implementation of `StreamedResponse` for [FunctionModel][pydantic_ai.models.function.FunctionModel]."""

    _model_name: str
    _iter: AsyncIterator[str | DeltaToolCalls]
    _timestamp: datetime = field(default_factory=_utils.now_utc)

    def __post_init__(self):
        self._usage += _estimate_usage([])

    async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]:
        async for item in self._iter:
            if isinstance(item, str):
                response_tokens = _estimate_string_tokens(item)
                self._usage += usage.Usage(response_tokens=response_tokens, total_tokens=response_tokens)
                yield self._parts_manager.handle_text_delta(vendor_part_id='content', content=item)
            else:
                delta_tool_calls = item
                for dtc_index, delta_tool_call in delta_tool_calls.items():
                    if delta_tool_call.json_args:
                        response_tokens = _estimate_string_tokens(delta_tool_call.json_args)
                        self._usage += usage.Usage(response_tokens=response_tokens, total_tokens=response_tokens)
                    maybe_event = self._parts_manager.handle_tool_call_delta(
                        vendor_part_id=dtc_index,
                        tool_name=delta_tool_call.name,
                        args=delta_tool_call.json_args,
                        tool_call_id=delta_tool_call.tool_call_id,
                    )
                    if maybe_event is not None:
                        yield maybe_event

    @property
    def model_name(self) -> str:
        """Get the model name of the response."""
        return self._model_name

    @property
    def timestamp(self) -> datetime:
        """Get the timestamp of the response."""
        return self._timestamp

model_name property

model_name: str

获取响应的模型名称。

timestamp property

timestamp: datetime

获取响应的时间戳。