跳到内容

pydantic_ai.models.gemini

使用 HTTPXPydantic 自定义与 generativelanguage.googleapis.com API 的接口。

用于与 generativelanguage.googleapis.com API 交互的 Google SDK google-generativeai 看起来像是由一位 Java 开发者编写的,这位开发者自认为对 OOP 无所不知,花了 30 分钟尝试学习 Python,然后放弃并决定构建这个库来证明 Python 有多糟糕。它也没有使用 httpx 进行 HTTP 请求,并尝试自己实现工具调用,但没有使用 Pydantic 或类似的工具进行验证。

因此,我们直接实现了对该 API 的支持。

尽管存在这些缺点,但 Gemini 模型实际上非常强大且速度很快。

设置

有关如何设置此模型的身份验证的详细信息,请参阅Gemini 的模型配置

LatestGeminiModelNames module-attribute

LatestGeminiModelNames = Literal[
    "gemini-1.5-flash",
    "gemini-1.5-flash-8b",
    "gemini-1.5-pro",
    "gemini-1.0-pro",
    "gemini-2.0-flash-exp",
    "gemini-2.0-flash-thinking-exp-01-21",
    "gemini-exp-1206",
    "gemini-2.0-flash",
    "gemini-2.0-flash-lite-preview-02-05",
    "gemini-2.0-pro-exp-02-05",
]

最新的 Gemini 模型。

GeminiModelName module-attribute

GeminiModelName = Union[str, LatestGeminiModelNames]

可能的 Gemini 模型名称。

由于 Gemini 支持各种带有日期戳的模型,我们明确列出了最新的模型,但允许类型提示中使用任何名称。有关完整列表,请参阅 Gemini API 文档

GeminiModelSettings

基类:ModelSettings

用于 Gemini 模型请求的设置。

源代码位于 pydantic_ai_slim/pydantic_ai/models/gemini.py
72
73
74
75
class GeminiModelSettings(ModelSettings):
    """Settings used for a Gemini model request."""

    gemini_safety_settings: list[GeminiSafetySettings]

GeminiModel dataclass

基类:Model

一个通过 generativelanguage.googleapis.com API 使用 Gemini 的模型。

这是从头开始实现的,而不是使用专门的 SDK,此处提供了良好的 API 文档。

除了 __init__ 之外,所有方法都是私有的或与基类的方法匹配。

源代码位于 pydantic_ai_slim/pydantic_ai/models/gemini.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
@dataclass(init=False)
class GeminiModel(Model):
    """A model that uses Gemini via `generativelanguage.googleapis.com` API.

    This is implemented from scratch rather than using a dedicated SDK, good API documentation is
    available [here](https://ai.google.dev/api).

    Apart from `__init__`, all methods are private or match those of the base class.
    """

    client: AsyncHTTPClient = field(repr=False)

    _model_name: GeminiModelName = field(repr=False)
    _provider: Literal['google-gla', 'google-vertex'] | Provider[AsyncHTTPClient] | None = field(repr=False)
    _auth: AuthProtocol | None = field(repr=False)
    _url: str | None = field(repr=False)
    _system: str = field(default='gemini', repr=False)

    @overload
    def __init__(
        self,
        model_name: GeminiModelName,
        *,
        provider: Literal['google-gla', 'google-vertex'] | Provider[AsyncHTTPClient] = 'google-gla',
    ) -> None: ...

    @deprecated('Use the `provider` argument instead of the `api_key`, `http_client`, and `url_template` arguments.')
    @overload
    def __init__(
        self,
        model_name: GeminiModelName,
        *,
        provider: None = None,
        api_key: str | None = None,
        http_client: AsyncHTTPClient | None = None,
        url_template: str = 'https://generativelanguage.googleapis.com/v1beta/models/{model}:',
    ) -> None: ...

    def __init__(
        self,
        model_name: GeminiModelName,
        *,
        provider: Literal['google-gla', 'google-vertex'] | Provider[AsyncHTTPClient] | None = None,
        api_key: str | None = None,
        http_client: AsyncHTTPClient | None = None,
        url_template: str = 'https://generativelanguage.googleapis.com/v1beta/models/{model}:',
    ):
        """Initialize a Gemini model.

        Args:
            model_name: The name of the model to use.
            provider: The provider to use for the model.
            api_key: The API key to use for authentication, if not provided, the `GEMINI_API_KEY` environment variable
                will be used if available.
            http_client: An existing `httpx.AsyncClient` to use for making HTTP requests.
            url_template: The URL template to use for making requests, you shouldn't need to change this,
                docs [here](https://ai.google.dev/gemini-api/docs/quickstart?lang=rest#make-first-request),
                `model` is substituted with the model name, and `function` is added to the end of the URL.
        """
        self._model_name = model_name
        self._provider = provider

        if provider is not None:
            if isinstance(provider, str):
                provider = infer_provider(provider)
            self._system = provider.name
            self.client = provider.client
            self._url = str(self.client.base_url)
        else:
            if api_key is None:
                if env_api_key := os.getenv('GEMINI_API_KEY'):
                    api_key = env_api_key
                else:
                    raise UserError('API key must be provided or set in the GEMINI_API_KEY environment variable')
            self.client = http_client or cached_async_http_client()
            self._auth = ApiKeyAuth(api_key)
            self._url = url_template.format(model=model_name)

    @property
    def auth(self) -> AuthProtocol:
        assert self._auth is not None, 'Auth not initialized'
        return self._auth

    @property
    def base_url(self) -> str:
        assert self._url is not None, 'URL not initialized'
        return self._url

    async def request(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> tuple[ModelResponse, usage.Usage]:
        check_allow_model_requests()
        async with self._make_request(
            messages, False, cast(GeminiModelSettings, model_settings or {}), model_request_parameters
        ) as http_response:
            response = _gemini_response_ta.validate_json(await http_response.aread())
        return self._process_response(response), _metadata_as_usage(response)

    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncIterator[StreamedResponse]:
        check_allow_model_requests()
        async with self._make_request(
            messages, True, cast(GeminiModelSettings, model_settings or {}), model_request_parameters
        ) as http_response:
            yield await self._process_streamed_response(http_response)

    @property
    def model_name(self) -> GeminiModelName:
        """The model name."""
        return self._model_name

    @property
    def system(self) -> str:
        """The system / model provider."""
        return self._system

    def _get_tools(self, model_request_parameters: ModelRequestParameters) -> _GeminiTools | None:
        tools = [_function_from_abstract_tool(t) for t in model_request_parameters.function_tools]
        if model_request_parameters.result_tools:
            tools += [_function_from_abstract_tool(t) for t in model_request_parameters.result_tools]
        return _GeminiTools(function_declarations=tools) if tools else None

    def _get_tool_config(
        self, model_request_parameters: ModelRequestParameters, tools: _GeminiTools | None
    ) -> _GeminiToolConfig | None:
        if model_request_parameters.allow_text_result:
            return None
        elif tools:
            return _tool_config([t['name'] for t in tools['function_declarations']])
        else:
            return _tool_config([])

    @asynccontextmanager
    async def _make_request(
        self,
        messages: list[ModelMessage],
        streamed: bool,
        model_settings: GeminiModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncIterator[HTTPResponse]:
        tools = self._get_tools(model_request_parameters)
        tool_config = self._get_tool_config(model_request_parameters, tools)
        sys_prompt_parts, contents = await self._message_to_gemini_content(messages)

        request_data = _GeminiRequest(contents=contents)
        if sys_prompt_parts:
            request_data['system_instruction'] = _GeminiTextContent(role='user', parts=sys_prompt_parts)
        if tools is not None:
            request_data['tools'] = tools
        if tool_config is not None:
            request_data['tool_config'] = tool_config

        generation_config: _GeminiGenerationConfig = {}
        if model_settings:
            if (max_tokens := model_settings.get('max_tokens')) is not None:
                generation_config['max_output_tokens'] = max_tokens
            if (temperature := model_settings.get('temperature')) is not None:
                generation_config['temperature'] = temperature
            if (top_p := model_settings.get('top_p')) is not None:
                generation_config['top_p'] = top_p
            if (presence_penalty := model_settings.get('presence_penalty')) is not None:
                generation_config['presence_penalty'] = presence_penalty
            if (frequency_penalty := model_settings.get('frequency_penalty')) is not None:
                generation_config['frequency_penalty'] = frequency_penalty
            if (gemini_safety_settings := model_settings.get('gemini_safety_settings')) != []:
                request_data['safety_settings'] = gemini_safety_settings
        if generation_config:
            request_data['generation_config'] = generation_config

        headers = {
            'Content-Type': 'application/json',
            'User-Agent': get_user_agent(),
        }
        if self._provider is None:  # pragma: no cover
            url = self.base_url + ('streamGenerateContent' if streamed else 'generateContent')
            headers.update(await self.auth.headers())
        else:
            url = f'/{self._model_name}:{"streamGenerateContent" if streamed else "generateContent"}'

        request_json = _gemini_request_ta.dump_json(request_data, by_alias=True)

        async with self.client.stream(
            'POST',
            url,
            content=request_json,
            headers=headers,
            timeout=model_settings.get('timeout', USE_CLIENT_DEFAULT),
        ) as r:
            if (status_code := r.status_code) != 200:
                await r.aread()
                if status_code >= 400:
                    raise ModelHTTPError(status_code=status_code, model_name=self.model_name, body=r.text)
                raise UnexpectedModelBehavior(f'Unexpected response from gemini {status_code}', r.text)
            yield r

    def _process_response(self, response: _GeminiResponse) -> ModelResponse:
        if len(response['candidates']) != 1:
            raise UnexpectedModelBehavior('Expected exactly one candidate in Gemini response')
        if 'content' not in response['candidates'][0]:
            if response['candidates'][0].get('finish_reason') == 'SAFETY':
                raise UnexpectedModelBehavior('Safety settings triggered', str(response))
            else:
                raise UnexpectedModelBehavior('Content field missing from Gemini response', str(response))
        parts = response['candidates'][0]['content']['parts']
        return _process_response_from_parts(parts, model_name=response.get('model_version', self._model_name))

    async def _process_streamed_response(self, http_response: HTTPResponse) -> StreamedResponse:
        """Process a streamed response, and prepare a streaming response to return."""
        aiter_bytes = http_response.aiter_bytes()
        start_response: _GeminiResponse | None = None
        content = bytearray()

        async for chunk in aiter_bytes:
            content.extend(chunk)
            responses = _gemini_streamed_response_ta.validate_json(
                _ensure_decodeable(content),
                experimental_allow_partial='trailing-strings',
            )
            if responses:
                last = responses[-1]
                if last['candidates'] and last['candidates'][0].get('content', {}).get('parts'):
                    start_response = last
                    break

        if start_response is None:
            raise UnexpectedModelBehavior('Streamed response ended without content or tool calls')

        return GeminiStreamedResponse(_model_name=self._model_name, _content=content, _stream=aiter_bytes)

    @classmethod
    async def _message_to_gemini_content(
        cls, messages: list[ModelMessage]
    ) -> tuple[list[_GeminiTextPart], list[_GeminiContent]]:
        sys_prompt_parts: list[_GeminiTextPart] = []
        contents: list[_GeminiContent] = []
        for m in messages:
            if isinstance(m, ModelRequest):
                message_parts: list[_GeminiPartUnion] = []

                for part in m.parts:
                    if isinstance(part, SystemPromptPart):
                        sys_prompt_parts.append(_GeminiTextPart(text=part.content))
                    elif isinstance(part, UserPromptPart):
                        message_parts.extend(await cls._map_user_prompt(part))
                    elif isinstance(part, ToolReturnPart):
                        message_parts.append(_response_part_from_response(part.tool_name, part.model_response_object()))
                    elif isinstance(part, RetryPromptPart):
                        if part.tool_name is None:
                            message_parts.append(_GeminiTextPart(text=part.model_response()))
                        else:
                            response = {'call_error': part.model_response()}
                            message_parts.append(_response_part_from_response(part.tool_name, response))
                    else:
                        assert_never(part)

                if message_parts:
                    contents.append(_GeminiContent(role='user', parts=message_parts))
            elif isinstance(m, ModelResponse):
                contents.append(_content_model_response(m))
            else:
                assert_never(m)

        return sys_prompt_parts, contents

    @staticmethod
    async def _map_user_prompt(part: UserPromptPart) -> list[_GeminiPartUnion]:
        if isinstance(part.content, str):
            return [{'text': part.content}]
        else:
            content: list[_GeminiPartUnion] = []
            for item in part.content:
                if isinstance(item, str):
                    content.append({'text': item})
                elif isinstance(item, BinaryContent):
                    base64_encoded = base64.b64encode(item.data).decode('utf-8')
                    content.append(
                        _GeminiInlineDataPart(inline_data={'data': base64_encoded, 'mime_type': item.media_type})
                    )
                elif isinstance(item, (AudioUrl, ImageUrl, DocumentUrl)):
                    client = cached_async_http_client()
                    response = await client.get(item.url, follow_redirects=True)
                    response.raise_for_status()
                    mime_type = response.headers['Content-Type'].split(';')[0]
                    inline_data = _GeminiInlineDataPart(
                        inline_data={'data': base64.b64encode(response.content).decode('utf-8'), 'mime_type': mime_type}
                    )
                    content.append(inline_data)
                else:
                    assert_never(item)
        return content

__init__

__init__(
    model_name: GeminiModelName,
    *,
    provider: (
        Literal["google-gla", "google-vertex"]
        | Provider[AsyncClient]
    ) = "google-gla"
) -> None
__init__(
    model_name: GeminiModelName,
    *,
    provider: None = None,
    api_key: str | None = None,
    http_client: AsyncClient | None = None,
    url_template: str = "https://generativelanguage.googleapis.com/v1beta/models/{model}:"
) -> None
__init__(
    model_name: GeminiModelName,
    *,
    provider: (
        Literal["google-gla", "google-vertex"]
        | Provider[AsyncClient]
        | None
    ) = None,
    api_key: str | None = None,
    http_client: AsyncClient | None = None,
    url_template: str = "https://generativelanguage.googleapis.com/v1beta/models/{model}:"
)

初始化 Gemini 模型。

参数

名称 类型 描述 默认值
model_name GeminiModelName

要使用的模型名称。

必需
provider Literal['google-gla', 'google-vertex'] | Provider[AsyncClient] | None

用于模型的提供程序。

None
api_key str | None

用于身份验证的 API 密钥,如果未提供,则将使用 GEMINI_API_KEY 环境变量(如果可用)。

None
http_client AsyncClient | None

用于发出 HTTP 请求的现有 httpx.AsyncClient

None
url_template str

用于发出请求的 URL 模板,您无需更改此项,文档此处model 替换为模型名称,function 添加到 URL 的末尾。

'https://generativelanguage.googleapis.com/v1beta/models/{model}:'
源代码位于 pydantic_ai_slim/pydantic_ai/models/gemini.py
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
def __init__(
    self,
    model_name: GeminiModelName,
    *,
    provider: Literal['google-gla', 'google-vertex'] | Provider[AsyncHTTPClient] | None = None,
    api_key: str | None = None,
    http_client: AsyncHTTPClient | None = None,
    url_template: str = 'https://generativelanguage.googleapis.com/v1beta/models/{model}:',
):
    """Initialize a Gemini model.

    Args:
        model_name: The name of the model to use.
        provider: The provider to use for the model.
        api_key: The API key to use for authentication, if not provided, the `GEMINI_API_KEY` environment variable
            will be used if available.
        http_client: An existing `httpx.AsyncClient` to use for making HTTP requests.
        url_template: The URL template to use for making requests, you shouldn't need to change this,
            docs [here](https://ai.google.dev/gemini-api/docs/quickstart?lang=rest#make-first-request),
            `model` is substituted with the model name, and `function` is added to the end of the URL.
    """
    self._model_name = model_name
    self._provider = provider

    if provider is not None:
        if isinstance(provider, str):
            provider = infer_provider(provider)
        self._system = provider.name
        self.client = provider.client
        self._url = str(self.client.base_url)
    else:
        if api_key is None:
            if env_api_key := os.getenv('GEMINI_API_KEY'):
                api_key = env_api_key
            else:
                raise UserError('API key must be provided or set in the GEMINI_API_KEY environment variable')
        self.client = http_client or cached_async_http_client()
        self._auth = ApiKeyAuth(api_key)
        self._url = url_template.format(model=model_name)

model_name property

model_name: GeminiModelName

模型名称。

system property

system: str

系统 / 模型提供程序。

AuthProtocol

基类:Protocol

Gemini 身份验证的抽象定义。

源代码位于 pydantic_ai_slim/pydantic_ai/models/gemini.py
378
379
380
381
class AuthProtocol(Protocol):
    """Abstract definition for Gemini authentication."""

    async def headers(self) -> dict[str, str]: ...

ApiKeyAuth dataclass

使用 API 密钥进行身份验证,用于 X-Goog-Api-Key 标头。

源代码位于 pydantic_ai_slim/pydantic_ai/models/gemini.py
384
385
386
387
388
389
390
391
392
@dataclass
class ApiKeyAuth:
    """Authentication using an API key for the `X-Goog-Api-Key` header."""

    api_key: str

    async def headers(self) -> dict[str, str]:
        # https://cloud.google.com/docs/authentication/api-keys-use#using-with-rest
        return {'X-Goog-Api-Key': self.api_key}

GeminiStreamedResponse dataclass

基类:StreamedResponse

StreamedResponse 对 Gemini 模型的实现。

源代码位于 pydantic_ai_slim/pydantic_ai/models/gemini.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
@dataclass
class GeminiStreamedResponse(StreamedResponse):
    """Implementation of `StreamedResponse` for the Gemini model."""

    _model_name: GeminiModelName
    _content: bytearray
    _stream: AsyncIterator[bytes]
    _timestamp: datetime = field(default_factory=_utils.now_utc, init=False)

    async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]:
        async for gemini_response in self._get_gemini_responses():
            candidate = gemini_response['candidates'][0]
            if 'content' not in candidate:
                raise UnexpectedModelBehavior('Streamed response has no content field')
            gemini_part: _GeminiPartUnion
            for gemini_part in candidate['content']['parts']:
                if 'text' in gemini_part:
                    # Using vendor_part_id=None means we can produce multiple text parts if their deltas are sprinkled
                    # amongst the tool call deltas
                    yield self._parts_manager.handle_text_delta(vendor_part_id=None, content=gemini_part['text'])

                elif 'function_call' in gemini_part:
                    # Here, we assume all function_call parts are complete and don't have deltas.
                    # We do this by assigning a unique randomly generated "vendor_part_id".
                    # We need to confirm whether this is actually true, but if it isn't, we can still handle it properly
                    # it would just be a bit more complicated. And we'd need to confirm the intended semantics.
                    maybe_event = self._parts_manager.handle_tool_call_delta(
                        vendor_part_id=uuid4(),
                        tool_name=gemini_part['function_call']['name'],
                        args=gemini_part['function_call']['args'],
                        tool_call_id=None,
                    )
                    if maybe_event is not None:
                        yield maybe_event
                else:
                    assert 'function_response' in gemini_part, f'Unexpected part: {gemini_part}'

    async def _get_gemini_responses(self) -> AsyncIterator[_GeminiResponse]:
        # This method exists to ensure we only yield completed items, so we don't need to worry about
        # partial gemini responses, which would make everything more complicated

        gemini_responses: list[_GeminiResponse] = []
        current_gemini_response_index = 0
        # Right now, there are some circumstances where we will have information that could be yielded sooner than it is
        # But changing that would make things a lot more complicated.
        async for chunk in self._stream:
            self._content.extend(chunk)

            gemini_responses = _gemini_streamed_response_ta.validate_json(
                _ensure_decodeable(self._content),
                experimental_allow_partial='trailing-strings',
            )

            # The idea: yield only up to the latest response, which might still be partial.
            # Note that if the latest response is complete, we could yield it immediately, but there's not a good
            # allow_partial API to determine if the last item in the list is complete.
            responses_to_yield = gemini_responses[:-1]
            for r in responses_to_yield[current_gemini_response_index:]:
                current_gemini_response_index += 1
                self._usage += _metadata_as_usage(r)
                yield r

        # Now yield the final response, which should be complete
        if gemini_responses:
            r = gemini_responses[-1]
            self._usage += _metadata_as_usage(r)
            yield r

    @property
    def model_name(self) -> GeminiModelName:
        """Get the model name of the response."""
        return self._model_name

    @property
    def timestamp(self) -> datetime:
        """Get the timestamp of the response."""
        return self._timestamp

model_name property

model_name: GeminiModelName

获取响应的模型名称。

timestamp property

timestamp: datetime

获取响应的时间戳。

GeminiSafetySettings

基类:TypedDict

Gemini 模型请求的安全设置选项。

有关安全类别和阈值描述,请参阅 Gemini API 文档。有关如何使用 GeminiSafetySettings 的示例,请参阅此处

源代码位于 pydantic_ai_slim/pydantic_ai/models/gemini.py
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
class GeminiSafetySettings(TypedDict):
    """Safety settings options for Gemini model request.

    See [Gemini API docs](https://ai.google.dev/gemini-api/docs/safety-settings) for safety category and threshold descriptions.
    For an example on how to use `GeminiSafetySettings`, see [here](../../agents.md#model-specific-settings).
    """

    category: Literal[
        'HARM_CATEGORY_UNSPECIFIED',
        'HARM_CATEGORY_HARASSMENT',
        'HARM_CATEGORY_HATE_SPEECH',
        'HARM_CATEGORY_SEXUALLY_EXPLICIT',
        'HARM_CATEGORY_DANGEROUS_CONTENT',
        'HARM_CATEGORY_CIVIC_INTEGRITY',
    ]
    """
    Safety settings category.
    """

    threshold: Literal[
        'HARM_BLOCK_THRESHOLD_UNSPECIFIED',
        'BLOCK_LOW_AND_ABOVE',
        'BLOCK_MEDIUM_AND_ABOVE',
        'BLOCK_ONLY_HIGH',
        'BLOCK_NONE',
        'OFF',
    ]
    """
    Safety settings threshold.
    """

category instance-attribute

category: Literal[
    "HARM_CATEGORY_UNSPECIFIED",
    "HARM_CATEGORY_HARASSMENT",
    "HARM_CATEGORY_HATE_SPEECH",
    "HARM_CATEGORY_SEXUALLY_EXPLICIT",
    "HARM_CATEGORY_DANGEROUS_CONTENT",
    "HARM_CATEGORY_CIVIC_INTEGRITY",
]

安全设置类别。

threshold instance-attribute

threshold: Literal[
    "HARM_BLOCK_THRESHOLD_UNSPECIFIED",
    "BLOCK_LOW_AND_ABOVE",
    "BLOCK_MEDIUM_AND_ABOVE",
    "BLOCK_ONLY_HIGH",
    "BLOCK_NONE",
    "OFF",
]

安全设置阈值。