跳转到内容

pydantic_ai.models.instrumented

instrument_model

instrument_model(
    model: Model, instrument: InstrumentationSettings | bool
) -> Model

使用 OpenTelemetry/logfire 来检测模型。

源代码位于 pydantic_ai_slim/pydantic_ai/models/instrumented.py
63
64
65
66
67
68
69
70
71
def instrument_model(model: Model, instrument: InstrumentationSettings | bool) -> Model:
    """Instrument a model with OpenTelemetry/logfire."""
    if instrument and not isinstance(model, InstrumentedModel):
        if instrument is True:
            instrument = InstrumentationSettings()

        model = InstrumentedModel(model, instrument)

    return model

InstrumentationSettings dataclass

用于通过 OpenTelemetry 检测模型和代理的选项。

用于

请参阅调试和监控指南以获取更多信息。

源代码位于 pydantic_ai_slim/pydantic_ai/models/instrumented.py
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
@dataclass(init=False)
class InstrumentationSettings:
    """Options for instrumenting models and agents with OpenTelemetry.

    Used in:

    - `Agent(instrument=...)`
    - [`Agent.instrument_all()`][pydantic_ai.agent.Agent.instrument_all]
    - [`InstrumentedModel`][pydantic_ai.models.instrumented.InstrumentedModel]

    See the [Debugging and Monitoring guide](https://ai.pydantic.org.cn/logfire/) for more info.
    """

    tracer: Tracer = field(repr=False)
    event_logger: EventLogger = field(repr=False)
    event_mode: Literal['attributes', 'logs'] = 'attributes'
    include_binary_content: bool = True
    include_content: bool = True
    version: Literal[1, 2] = 1

    def __init__(
        self,
        *,
        tracer_provider: TracerProvider | None = None,
        meter_provider: MeterProvider | None = None,
        include_binary_content: bool = True,
        include_content: bool = True,
        version: Literal[1, 2] = 2,
        event_mode: Literal['attributes', 'logs'] = 'attributes',
        event_logger_provider: EventLoggerProvider | None = None,
    ):
        """Create instrumentation options.

        Args:
            tracer_provider: The OpenTelemetry tracer provider to use.
                If not provided, the global tracer provider is used.
                Calling `logfire.configure()` sets the global tracer provider, so most users don't need this.
            meter_provider: The OpenTelemetry meter provider to use.
                If not provided, the global meter provider is used.
                Calling `logfire.configure()` sets the global meter provider, so most users don't need this.
            include_binary_content: Whether to include binary content in the instrumentation events.
            include_content: Whether to include prompts, completions, and tool call arguments and responses
                in the instrumentation events.
            version: Version of the data format. This is unrelated to the Pydantic AI package version.
                Version 1 is based on the legacy event-based OpenTelemetry GenAI spec
                    and will be removed in a future release.
                    The parameters `event_mode` and `event_logger_provider` are only relevant for version 1.
                Version 2 uses the newer OpenTelemetry GenAI spec and stores messages in the following attributes:
                    - `gen_ai.system_instructions` for instructions passed to the agent.
                    - `gen_ai.input.messages` and `gen_ai.output.messages` on model request spans.
                    - `pydantic_ai.all_messages` on agent run spans.
            event_mode: The mode for emitting events in version 1.
                If `'attributes'`, events are attached to the span as attributes.
                If `'logs'`, events are emitted as OpenTelemetry log-based events.
            event_logger_provider: The OpenTelemetry event logger provider to use.
                If not provided, the global event logger provider is used.
                Calling `logfire.configure()` sets the global event logger provider, so most users don't need this.
                This is only used if `event_mode='logs'` and `version=1`.
        """
        from pydantic_ai import __version__

        tracer_provider = tracer_provider or get_tracer_provider()
        meter_provider = meter_provider or get_meter_provider()
        event_logger_provider = event_logger_provider or get_event_logger_provider()
        scope_name = 'pydantic-ai'
        self.tracer = tracer_provider.get_tracer(scope_name, __version__)
        self.meter = meter_provider.get_meter(scope_name, __version__)
        self.event_logger = event_logger_provider.get_event_logger(scope_name, __version__)
        self.event_mode = event_mode
        self.include_binary_content = include_binary_content
        self.include_content = include_content

        if event_mode == 'logs' and version != 1:
            warnings.warn(
                'event_mode is only relevant for version=1 which is deprecated and will be removed in a future release.',
                stacklevel=2,
            )
            version = 1

        self.version = version

        # As specified in the OpenTelemetry GenAI metrics spec:
        # https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-metrics/#metric-gen_aiclienttokenusage
        tokens_histogram_kwargs = dict(
            name='gen_ai.client.token.usage',
            unit='{token}',
            description='Measures number of input and output tokens used',
        )
        try:
            self.tokens_histogram = self.meter.create_histogram(
                **tokens_histogram_kwargs,
                explicit_bucket_boundaries_advisory=TOKEN_HISTOGRAM_BOUNDARIES,
            )
        except TypeError:  # pragma: lax no cover
            # Older OTel/logfire versions don't support explicit_bucket_boundaries_advisory
            self.tokens_histogram = self.meter.create_histogram(
                **tokens_histogram_kwargs,  # pyright: ignore
            )

    def messages_to_otel_events(self, messages: list[ModelMessage]) -> list[Event]:
        """Convert a list of model messages to OpenTelemetry events.

        Args:
            messages: The messages to convert.

        Returns:
            A list of OpenTelemetry events.
        """
        events: list[Event] = []
        instructions = InstrumentedModel._get_instructions(messages)  # pyright: ignore [reportPrivateUsage]
        if instructions is not None:
            events.append(
                Event(
                    'gen_ai.system.message',
                    body={**({'content': instructions} if self.include_content else {}), 'role': 'system'},
                )
            )

        for message_index, message in enumerate(messages):
            message_events: list[Event] = []
            if isinstance(message, ModelRequest):
                for part in message.parts:
                    if hasattr(part, 'otel_event'):
                        message_events.append(part.otel_event(self))
            elif isinstance(message, ModelResponse):  # pragma: no branch
                message_events = message.otel_events(self)
            for event in message_events:
                event.attributes = {
                    'gen_ai.message.index': message_index,
                    **(event.attributes or {}),
                }
            events.extend(message_events)

        for event in events:
            event.body = InstrumentedModel.serialize_any(event.body)
        return events

    def messages_to_otel_messages(self, messages: list[ModelMessage]) -> list[_otel_messages.ChatMessage]:
        result: list[_otel_messages.ChatMessage] = []
        for message in messages:
            if isinstance(message, ModelRequest):
                for is_system, group in itertools.groupby(message.parts, key=lambda p: isinstance(p, SystemPromptPart)):
                    message_parts: list[_otel_messages.MessagePart] = []
                    for part in group:
                        if hasattr(part, 'otel_message_parts'):
                            message_parts.extend(part.otel_message_parts(self))
                    result.append(
                        _otel_messages.ChatMessage(role='system' if is_system else 'user', parts=message_parts)
                    )
            elif isinstance(message, ModelResponse):  # pragma: no branch
                result.append(_otel_messages.ChatMessage(role='assistant', parts=message.otel_message_parts(self)))
        return result

    def handle_messages(self, input_messages: list[ModelMessage], response: ModelResponse, system: str, span: Span):
        if self.version == 1:
            events = self.messages_to_otel_events(input_messages)
            for event in self.messages_to_otel_events([response]):
                events.append(
                    Event(
                        'gen_ai.choice',
                        body={
                            'index': 0,
                            'message': event.body,
                        },
                    )
                )
            for event in events:
                event.attributes = {
                    GEN_AI_SYSTEM_ATTRIBUTE: system,
                    **(event.attributes or {}),
                }
            self._emit_events(span, events)
        else:
            output_messages = self.messages_to_otel_messages([response])
            assert len(output_messages) == 1
            output_message = cast(_otel_messages.OutputMessage, output_messages[0])
            if response.provider_details and 'finish_reason' in response.provider_details:
                output_message['finish_reason'] = response.provider_details['finish_reason']
            instructions = InstrumentedModel._get_instructions(input_messages)  # pyright: ignore [reportPrivateUsage]
            system_instructions_attributes = self.system_instructions_attributes(instructions)
            attributes = {
                'gen_ai.input.messages': json.dumps(self.messages_to_otel_messages(input_messages)),
                'gen_ai.output.messages': json.dumps([output_message]),
                **system_instructions_attributes,
                'logfire.json_schema': json.dumps(
                    {
                        'type': 'object',
                        'properties': {
                            'gen_ai.input.messages': {'type': 'array'},
                            'gen_ai.output.messages': {'type': 'array'},
                            **(
                                {'gen_ai.system_instructions': {'type': 'array'}}
                                if system_instructions_attributes
                                else {}
                            ),
                            'model_request_parameters': {'type': 'object'},
                        },
                    }
                ),
            }
            span.set_attributes(attributes)

    def system_instructions_attributes(self, instructions: str | None) -> dict[str, str]:
        if instructions and self.include_content:
            return {
                'gen_ai.system_instructions': json.dumps([_otel_messages.TextPart(type='text', content=instructions)]),
            }
        return {}

    def _emit_events(self, span: Span, events: list[Event]) -> None:
        if self.event_mode == 'logs':
            for event in events:
                self.event_logger.emit(event)
        else:
            attr_name = 'events'
            span.set_attributes(
                {
                    attr_name: json.dumps([InstrumentedModel.event_to_dict(event) for event in events]),
                    'logfire.json_schema': json.dumps(
                        {
                            'type': 'object',
                            'properties': {
                                attr_name: {'type': 'array'},
                                'model_request_parameters': {'type': 'object'},
                            },
                        }
                    ),
                }
            )

__init__

__init__(
    *,
    tracer_provider: TracerProvider | None = None,
    meter_provider: MeterProvider | None = None,
    include_binary_content: bool = True,
    include_content: bool = True,
    version: Literal[1, 2] = 2,
    event_mode: Literal[
        "attributes", "logs"
    ] = "attributes",
    event_logger_provider: EventLoggerProvider | None = None
)

创建检测选项。

参数

名称 类型 描述 默认值
tracer_provider TracerProvider | None

要使用的 OpenTelemetry 跟踪器提供程序。如果未提供,则使用全局跟踪器提供程序。调用 logfire.configure() 会设置全局跟踪器提供程序,因此大多数用户不需要此项。

None
meter_provider MeterProvider | None

要使用的 OpenTelemetry 度量提供程序。如果未提供,则使用全局度量提供程序。调用 logfire.configure() 会设置全局度量提供程序,因此大多数用户不需要此项。

None
include_binary_content bool

是否在检测事件中包含二进制内容。

True
include_content bool

是否在检测事件中包含提示、补全内容、工具调用参数和响应。

True
version Literal[1, 2]

数据格式的版本。这与 Pydantic AI 包的版本无关。版本 1 基于旧的、基于事件的 OpenTelemetry GenAI 规范,并将在未来版本中移除。参数 event_modeevent_logger_provider 仅与版本 1 相关。版本 2 使用更新的 OpenTelemetry GenAI 规范,并将消息存储在以下属性中: - gen_ai.system_instructions 用于传递给代理的指令。 - gen_ai.input.messagesgen_ai.output.messages 位于模型请求的 span 上。 - pydantic_ai.all_messages 位于代理运行的 span 上。

2
event_mode Literal['attributes', 'logs']

在版本 1 中发出事件的模式。如果为 'attributes',事件将作为属性附加到 span 上。如果为 'logs',事件将作为基于 OpenTelemetry 日志的事件发出。

'attributes'
event_logger_provider EventLoggerProvider | None

要使用的 OpenTelemetry 事件日志记录器提供程序。如果未提供,则使用全局事件日志记录器提供程序。调用 logfire.configure() 会设置全局事件日志记录器提供程序,因此大多数用户不需要此项。此项仅在 event_mode='logs'version=1 时使用。

None
源代码位于 pydantic_ai_slim/pydantic_ai/models/instrumented.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
def __init__(
    self,
    *,
    tracer_provider: TracerProvider | None = None,
    meter_provider: MeterProvider | None = None,
    include_binary_content: bool = True,
    include_content: bool = True,
    version: Literal[1, 2] = 2,
    event_mode: Literal['attributes', 'logs'] = 'attributes',
    event_logger_provider: EventLoggerProvider | None = None,
):
    """Create instrumentation options.

    Args:
        tracer_provider: The OpenTelemetry tracer provider to use.
            If not provided, the global tracer provider is used.
            Calling `logfire.configure()` sets the global tracer provider, so most users don't need this.
        meter_provider: The OpenTelemetry meter provider to use.
            If not provided, the global meter provider is used.
            Calling `logfire.configure()` sets the global meter provider, so most users don't need this.
        include_binary_content: Whether to include binary content in the instrumentation events.
        include_content: Whether to include prompts, completions, and tool call arguments and responses
            in the instrumentation events.
        version: Version of the data format. This is unrelated to the Pydantic AI package version.
            Version 1 is based on the legacy event-based OpenTelemetry GenAI spec
                and will be removed in a future release.
                The parameters `event_mode` and `event_logger_provider` are only relevant for version 1.
            Version 2 uses the newer OpenTelemetry GenAI spec and stores messages in the following attributes:
                - `gen_ai.system_instructions` for instructions passed to the agent.
                - `gen_ai.input.messages` and `gen_ai.output.messages` on model request spans.
                - `pydantic_ai.all_messages` on agent run spans.
        event_mode: The mode for emitting events in version 1.
            If `'attributes'`, events are attached to the span as attributes.
            If `'logs'`, events are emitted as OpenTelemetry log-based events.
        event_logger_provider: The OpenTelemetry event logger provider to use.
            If not provided, the global event logger provider is used.
            Calling `logfire.configure()` sets the global event logger provider, so most users don't need this.
            This is only used if `event_mode='logs'` and `version=1`.
    """
    from pydantic_ai import __version__

    tracer_provider = tracer_provider or get_tracer_provider()
    meter_provider = meter_provider or get_meter_provider()
    event_logger_provider = event_logger_provider or get_event_logger_provider()
    scope_name = 'pydantic-ai'
    self.tracer = tracer_provider.get_tracer(scope_name, __version__)
    self.meter = meter_provider.get_meter(scope_name, __version__)
    self.event_logger = event_logger_provider.get_event_logger(scope_name, __version__)
    self.event_mode = event_mode
    self.include_binary_content = include_binary_content
    self.include_content = include_content

    if event_mode == 'logs' and version != 1:
        warnings.warn(
            'event_mode is only relevant for version=1 which is deprecated and will be removed in a future release.',
            stacklevel=2,
        )
        version = 1

    self.version = version

    # As specified in the OpenTelemetry GenAI metrics spec:
    # https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-metrics/#metric-gen_aiclienttokenusage
    tokens_histogram_kwargs = dict(
        name='gen_ai.client.token.usage',
        unit='{token}',
        description='Measures number of input and output tokens used',
    )
    try:
        self.tokens_histogram = self.meter.create_histogram(
            **tokens_histogram_kwargs,
            explicit_bucket_boundaries_advisory=TOKEN_HISTOGRAM_BOUNDARIES,
        )
    except TypeError:  # pragma: lax no cover
        # Older OTel/logfire versions don't support explicit_bucket_boundaries_advisory
        self.tokens_histogram = self.meter.create_histogram(
            **tokens_histogram_kwargs,  # pyright: ignore
        )

messages_to_otel_events

messages_to_otel_events(
    messages: list[ModelMessage],
) -> list[Event]

将模型消息列表转换为 OpenTelemetry 事件。

参数

名称 类型 描述 默认值
messages list[ModelMessage]

要转换的消息。

必需

返回

类型 描述
list[Event]

一个 OpenTelemetry 事件列表。

源代码位于 pydantic_ai_slim/pydantic_ai/models/instrumented.py
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
def messages_to_otel_events(self, messages: list[ModelMessage]) -> list[Event]:
    """Convert a list of model messages to OpenTelemetry events.

    Args:
        messages: The messages to convert.

    Returns:
        A list of OpenTelemetry events.
    """
    events: list[Event] = []
    instructions = InstrumentedModel._get_instructions(messages)  # pyright: ignore [reportPrivateUsage]
    if instructions is not None:
        events.append(
            Event(
                'gen_ai.system.message',
                body={**({'content': instructions} if self.include_content else {}), 'role': 'system'},
            )
        )

    for message_index, message in enumerate(messages):
        message_events: list[Event] = []
        if isinstance(message, ModelRequest):
            for part in message.parts:
                if hasattr(part, 'otel_event'):
                    message_events.append(part.otel_event(self))
        elif isinstance(message, ModelResponse):  # pragma: no branch
            message_events = message.otel_events(self)
        for event in message_events:
            event.attributes = {
                'gen_ai.message.index': message_index,
                **(event.attributes or {}),
            }
        events.extend(message_events)

    for event in events:
        event.body = InstrumentedModel.serialize_any(event.body)
    return events

InstrumentedModel dataclass

基类: WrapperModel

包装另一个模型的模型,以便使用 OpenTelemetry 检测请求。

请参阅调试和监控指南以获取更多信息。

源代码位于 pydantic_ai_slim/pydantic_ai/models/instrumented.py
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
@dataclass(init=False)
class InstrumentedModel(WrapperModel):
    """Model which wraps another model so that requests are instrumented with OpenTelemetry.

    See the [Debugging and Monitoring guide](https://ai.pydantic.org.cn/logfire/) for more info.
    """

    instrumentation_settings: InstrumentationSettings
    """Instrumentation settings for this model."""

    def __init__(
        self,
        wrapped: Model | KnownModelName,
        options: InstrumentationSettings | None = None,
    ) -> None:
        super().__init__(wrapped)
        self.instrumentation_settings = options or InstrumentationSettings()

    async def request(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> ModelResponse:
        with self._instrument(messages, model_settings, model_request_parameters) as finish:
            response = await super().request(messages, model_settings, model_request_parameters)
            finish(response)
            return response

    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
        run_context: RunContext[Any] | None = None,
    ) -> AsyncIterator[StreamedResponse]:
        with self._instrument(messages, model_settings, model_request_parameters) as finish:
            response_stream: StreamedResponse | None = None
            try:
                async with super().request_stream(
                    messages, model_settings, model_request_parameters, run_context
                ) as response_stream:
                    yield response_stream
            finally:
                if response_stream:  # pragma: no branch
                    finish(response_stream.get())

    @contextmanager
    def _instrument(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> Iterator[Callable[[ModelResponse], None]]:
        operation = 'chat'
        span_name = f'{operation} {self.model_name}'
        # TODO Missing attributes:
        #  - error.type: unclear if we should do something here or just always rely on span exceptions
        #  - gen_ai.request.stop_sequences/top_k: model_settings doesn't include these
        attributes: dict[str, AttributeValue] = {
            'gen_ai.operation.name': operation,
            **self.model_attributes(self.wrapped),
            'model_request_parameters': json.dumps(InstrumentedModel.serialize_any(model_request_parameters)),
            'logfire.json_schema': json.dumps(
                {
                    'type': 'object',
                    'properties': {'model_request_parameters': {'type': 'object'}},
                }
            ),
        }

        if model_settings:
            for key in MODEL_SETTING_ATTRIBUTES:
                if isinstance(value := model_settings.get(key), float | int):
                    attributes[f'gen_ai.request.{key}'] = value

        record_metrics: Callable[[], None] | None = None
        try:
            with self.instrumentation_settings.tracer.start_as_current_span(span_name, attributes=attributes) as span:

                def finish(response: ModelResponse):
                    # FallbackModel updates these span attributes.
                    attributes.update(getattr(span, 'attributes', {}))
                    request_model = attributes[GEN_AI_REQUEST_MODEL_ATTRIBUTE]
                    system = cast(str, attributes[GEN_AI_SYSTEM_ATTRIBUTE])

                    response_model = response.model_name or request_model

                    def _record_metrics():
                        metric_attributes = {
                            GEN_AI_SYSTEM_ATTRIBUTE: system,
                            'gen_ai.operation.name': operation,
                            'gen_ai.request.model': request_model,
                            'gen_ai.response.model': response_model,
                        }
                        if response.usage.input_tokens:  # pragma: no branch
                            self.instrumentation_settings.tokens_histogram.record(
                                response.usage.input_tokens,
                                {**metric_attributes, 'gen_ai.token.type': 'input'},
                            )
                        if response.usage.output_tokens:  # pragma: no branch
                            self.instrumentation_settings.tokens_histogram.record(
                                response.usage.output_tokens,
                                {**metric_attributes, 'gen_ai.token.type': 'output'},
                            )

                    nonlocal record_metrics
                    record_metrics = _record_metrics

                    if not span.is_recording():
                        return

                    self.instrumentation_settings.handle_messages(messages, response, system, span)
                    try:
                        cost_attributes = {'operation.cost': float(response.cost().total_price)}
                    except LookupError:
                        cost_attributes = {}
                    span.set_attributes(
                        {
                            **response.usage.opentelemetry_attributes(),
                            'gen_ai.response.model': response_model,
                            **cost_attributes,
                        }
                    )
                    span.update_name(f'{operation} {request_model}')

                yield finish
        finally:
            if record_metrics:
                # We only want to record metrics after the span is finished,
                # to prevent them from being redundantly recorded in the span itself by logfire.
                record_metrics()

    @staticmethod
    def model_attributes(model: Model):
        attributes: dict[str, AttributeValue] = {
            GEN_AI_SYSTEM_ATTRIBUTE: model.system,
            GEN_AI_REQUEST_MODEL_ATTRIBUTE: model.model_name,
        }
        if base_url := model.base_url:
            try:
                parsed = urlparse(base_url)
            except Exception:  # pragma: no cover
                pass
            else:
                if parsed.hostname:  # pragma: no branch
                    attributes['server.address'] = parsed.hostname
                if parsed.port:  # pragma: no branch
                    attributes['server.port'] = parsed.port

        return attributes

    @staticmethod
    def event_to_dict(event: Event) -> dict[str, Any]:
        if not event.body:
            body = {}  # pragma: no cover
        elif isinstance(event.body, Mapping):
            body = event.body  # type: ignore
        else:
            body = {'body': event.body}
        return {**body, **(event.attributes or {})}

    @staticmethod
    def serialize_any(value: Any) -> str:
        try:
            return ANY_ADAPTER.dump_python(value, mode='json')
        except Exception:
            try:
                return str(value)
            except Exception as e:
                return f'Unable to serialize: {e}'

instrumentation_settings instance-attribute

instrumentation_settings: InstrumentationSettings = (
    options or InstrumentationSettings()
)

此模型的检测设置。